Recursive Filtering for Zero Offset Correction of Diving Depth Time Series with GNU R Package diveMove
نویسندگان
چکیده
منابع مشابه
Recursive Filtering for Zero Offset Correction of Diving Depth Time Series with GNU R Package diveMove
Zero offset correction of diving depth measured by time-depth recorders is required to remove artifacts arising from temporal changes in accuracy of pressure transducers. Currently used methods for this procedure are in the proprietary software domain, where researchers cannot study it in sufficient detail, so they have little or no control over how their data were changed. GNU R package diveMo...
متن کاملDiving Behaviour Analysis in R∗ An Introduction to the diveMove Package
Remarkable developments in technology for electronic data collection and archival have increased researchers’ ability to study the behaviour of aquatic animals while reducing the effort involved and impact on study animals. For example, interest in the study of diving behaviour led to the development of minute time-depth recorders (TDRs) that can collect more than 15 MB of data on depth, veloci...
متن کاملAlgorithms for Linear Time Series Analysis: With R Package
Our ltsa package implements the Durbin-Levinson and Trench algorithms and provides a general approach to the problems of fitting, forecasting and simulating linear time series models as well as fitting regression models with linear time series errors. For computational efficiency both algorithms are implemented in C and interfaced to R. Examples are given which illustrate the efficiency and acc...
متن کاملrainbow: An R Package for Visualizing Functional Time Series
Recent advances in computer technology have tremendously increased the use of functional data, whose graphical representation can be infinite-dimensional curves, images or shapes. This article describes four methods for visualizing functional time series using an R add-on package. These methods are demonstrated using age-specific Australian fertility data from 1921 to 2006 and monthly sea surfa...
متن کاملAutomatic Time Series Forecasting: The forecast Package for R
Automatic forecasts of large numbers of univariate time series are often needed in business and other contexts. We describe two automatic forecasting algorithms that have been implemented in the forecast package for R. The first is based on innovations state space models that underly exponential smoothing methods. The second is a step-wise algorithm for forecasting with ARIMA models. The algori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS ONE
سال: 2011
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0015850